Exercise 106

A house purchased for $\$ 250,000$ is expected to be worth twice its purchase price in 18 years.
a. Find a linear function that models the price P of the house versus the number of years t since the original purchase.
b. Interpret the slope of the graph of P.
c. Find the price of the house 15 years from when it was originally purchased.

Solution

Part (a)
The house price is assumed to be a linear function.

$$
P(t)=m t+b
$$

Use the facts that the price is $\$ 250,000$ initially and $\$ 500,000$ in 18 years to determine m and b.

$$
\begin{aligned}
P(0) & =m(0)+b=250000 \\
P(18) & =m(18)+b=500000
\end{aligned}
$$

Solving this system of equations yields

$$
b=250000 \text { and } m=\frac{125000}{9} \approx 13889 .
$$

Therefore,

$$
P(t)=\frac{125000}{9} t+250000 .
$$

Part (b)

The slope m represents the amount of money the house's price increases every year.
Part (c)
To find the price of the house 15 years from when it was originally purchased, plug $t=15$ into the formula for $P(t)$.

$$
P(15)=\frac{125000}{9}(15)+250000=\frac{1375000}{3} \approx \$ 458333.33
$$

